Evaluating classifiers: refinements

Lecture 03.02

The Inadequacy of success rates

- As the class distribution becomes more skewed, evaluation based on success rate breaks down.
 - Consider a dataset where the classes appear in a 999:1 ratio.
 - A simple rule, which classifies every instance as the majority class, gives a 99.9% accuracy – no further improvement is needed!
- Evaluation by classification success rate also assumes equal error costs--that a false positive error is equivalent to a false negative error.
 - In the real world this is rarely the case, because classifications lead to actions which have consequences, sometimes grave.

Cost-based evaluation

- In practice, different types of classification errors often incur different costs
- The rare class is often denoted as positive (HIV from test results)
- The confusion matrix:

		Predict	ed class	
		Yes No		
Actual class	Yes	True positive	False negative	
	No	False positive	True negative	

Terminology

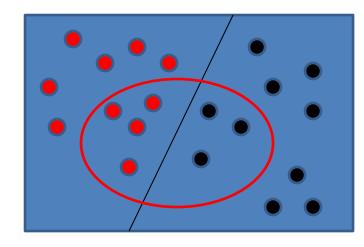
• The *confusion matrix*:

		Predict	ed class
		Yes	No
Actual class	Yes	True positive	False negative
	No	False positive	True negative

True positives (TP) – the number of positive examples correctly predicted as positives False negatives (FN) – the number of positive examples wrongly predicted as negatives False positives (FP) – the number of negative examples wrongly predicted as positives True negatives (TN) – the number of negative examples correctly predicted as negatives

Terminology. Fractions

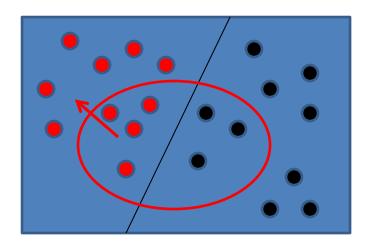
- Suppose you know what are all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval



True Positive Fraction of All Positives

- Suppose you know what are all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval
- True positive rate (fraction):
 TPF=TP/all positives
- In the example: 4 red dots out of 10 red dots – TPF=0.4
- Also called: sensitivity or recall

High sensitivity or high recall mean that classifier found most of the relevant positive instances



Examples:

High-sensitive HIV test- if the person is sick, it will be diagnosed with high-probability

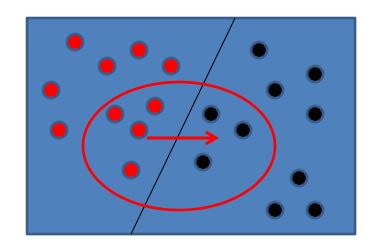
High-recall document query: the query brought most of the relevant documents

True Positive Fraction of All *Classified as Positives*

- Precision (fraction):
 precision=TP/(TP+FP)
- In the example: 4 red dots out of 7 total dots which are all identified as positive

Precision=4/7

 High precision means that classifier returned more relevant results than irrelevant



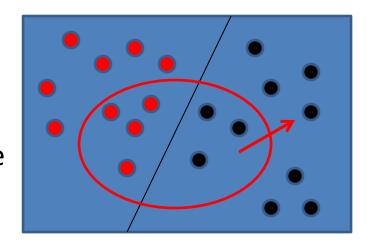
Example:

Highly precise HIV test – whoever is classified as HIV-positive is most probably sick

Terminology. False Positive Fractions

- False Positive Rate(fraction):
 FPF=FP/(all negatives)
- In the example: 3 black dots out of 10 total dots which represent all negative instances

 High FPF means that classifier often classifies negative as positive



Example: mammography

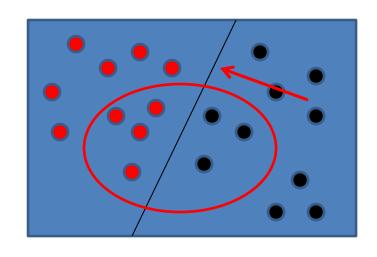
If the person is diagnosed, it is not very likely that the person is really sick

True Negative Fraction of All Negatives

- Specificity (fraction): specificity=TN/(all negatives)
- In the example: 7 black dots which are left outside of the positive prediction out of total 10 negative instances

Specificity=7/10

 High specificity means that if classifier identifies something as positive, it is a high probability that it is indeed positive



Highly-specific test means that it is very low probability to be classified as positive, if the person is indeed negative

Specificity + FPF=1.00

Incorporating the cost: Example

		Predicted class		
		Class +	Class -	
Actual	Class +	-1	100	
class	Class -	1	0	

For example, HIV diagnostic test

Cost matrix

- A cost matrix encodes the penalty of classifying records of one class as another.
- A negative value represents an award for making a correct classification

Counting the cost. Example

		Predicte	d class
		Class +	Class -
Actual	Class +	-1	100
class	Class -	1	0

Cost matrix

		Predicte	d class			Predicte	d class
		Class +	Class -			Class +	Class -
Actual	Class +	150	40	Actual	Class +	250	45
class	Class -	60	250	class	Class -	5	200

Confusion matrix for Classifier A

Confusion matrix for Classifier B

The total cost of model A=150*(-1)+60*1+40*100=3910 The total cost of model B=250*(-1)+5*1+45*100=4255

If not take cost into account B is better than A

		Predicted class		
		Class +	Class -	
Actual	Class +	-1	100	
class	Class -	1	0	

Cost matrix

	Predicted class				Predicte	d class	
		Class +	Class -			Class +	Class -
Actual	Class +	150	40	Actual	Class +	250	45
class	Class -	60	250	class	Class -	5	200

Classifier A

Classifier B

The total cost of model A=150*(-1)+60*1+40*100=3910The total cost of model B=250*(-1)+5*1+45*100=4255

HIV diagnostic test

		Predicted class		
		Class +	Class -	
Actual	Class +	-100	10000	
class	Class -	₁ 10	0	

Person dies untreated and infects others

Cost of additional testing plus some discomfort

Promotional mailing

		Predicted class		
		Class +		
Actual	Class +	-1000	1000	Looses potential revenue
class	Class -	1	0	
		Cost of ma	ailing	

Loan decisions

		Predicted class		
		Class +	Class -	
Actual	Class +	-100	10	 Looses potential revenue
class	Class -	₁ 50	0	
		/ bankruptc	У	

Fault diagnosis

	Predicted class					
		Class +	Class -			
Actual	Class +	-10	1	← Additional test		
class	Class -	₁ 50	C			
System failure						

Cost-based classification

- Let {p,n} be the positive and negative instance classes.
- Let {Y,N} be the classifications produced by a classifier.
- Let c(Y,n) be the cost of a false positive error.
- Let c(N,p) be the cost of a false negative error.
- For an instance *E*,
 - the classifier computes $p(\mathbf{p} \mid E)$ and $p(\mathbf{n} \mid E) = 1 p(\mathbf{p} \mid E)$
 - the decision to emit a positive classification should be:

$$[1-p(p|E)]*c(Y,n) < p(p|E) * c(N,p)$$